線性調(diào)頻信號(hào)的級(jí)聯(lián)隨機(jī)共振數(shù)字化接收
doi: 10.11999/JEIT 141496 cstr: 32379.14.JEIT 141496
-
1.
(解放軍信息工程大學(xué)信息系統(tǒng)工程學(xué)院 鄭州 450002) ②(解放軍69260部隊(duì) 烏魯木齊 830000)
國家自然科學(xué)基金(60472064, 61201380)
Cascaded Stochastic Resonance for Digitized Receiving of Linear Frequency Modulation Signal
-
1.
(Information System Engineering Institute, PLA Information Engineering University, Zhengzhou 450002, China)
-
2.
(Troops 69260 of PLA, Urumqi 830000, China)
The National Natural Science Foundation of China (60472064, 61201380)
-
摘要: 為消除隨機(jī)共振系統(tǒng)的窄帶限制,實(shí)現(xiàn)線性調(diào)頻信號(hào)的高增益數(shù)字化接收,該文提出一種基于樣點(diǎn)頻率設(shè)定的數(shù)字化接收方法。該方法直接將線性調(diào)頻信號(hào)通過數(shù)字化的樣點(diǎn)篩選、頻率設(shè)定過程,變換為適配于后續(xù)級(jí)聯(lián)隨機(jī)共振系統(tǒng)的單頻信號(hào)。從而順利完成寬帶接收信號(hào)中噪聲能量向信號(hào)能量的轉(zhuǎn)化。理論和仿真實(shí)驗(yàn)表明該算法可實(shí)現(xiàn)線性調(diào)頻的解調(diào),其處理增益較現(xiàn)有算法提高約2 dB。
-
關(guān)鍵詞:
- 無線通信 /
- 隨機(jī)共振 /
- 級(jí)聯(lián) /
- 線性調(diào)頻 /
- 數(shù)字化
Abstract: In order to eliminate the narrowband limit of stochastic resonance system, and to complete the digitized receiving of linear frequency modulation signal with high gain, a method based on the frequency setting of received digital samples is proposed. In this method, the linear frequency modulation is directly sent to the digitized samples flitting, frequency setting process, and is converted to a single frequency signal, which fits in the subsequent cascaded stochastic resonance system. As a result, the noise energy in broadband signal is converted to signal energy. Theory and simulation results show that the algorithm can demodulate the linear frequency modulation signal, and its processing gain is higher than the existing algorithms by about 2 dB.-
Key words:
- Wireless communication /
- Stochastic resonance /
- Cascaded /
- Linear Frequency Modulation (LFM) /
- Digitized
-
梁軍利, 楊樹元, 唐志峰. 基于隨機(jī)共振的微弱信號(hào)檢測[J],電子與信息學(xué)報(bào), 2006, 28(6): 1068-1072 Liang Jun-li, Yang Shu-yuan, and Tang Zhi-feng. Weak signal detection based on stochastic resonance[J]. Journal of Electronics Information Technology, 2006, 28(6): 1068-1072. Meng Yun-liang and Pei Chang-xing. Stochastic resonance in a bistable system driven by non-gaussian noise and Gaussian noise[C]. 2014 IEEE Workshop on Electronics, Computer and Applications, Ottawa, Canada, 2014: 358-361. 朱文濤, 蘇濤, 楊濤, 等. 線性調(diào)頻連續(xù)波信號(hào)檢測與參數(shù)估計(jì)算法[J]. 電子與信息學(xué)報(bào), 2014, 36(3): 552-558. Zhu Wen-tao, Su Tao, Yang Tao, et al.. Detection and parameter estimation of linear frequency modulation continuous wave signal[J]. Journal of Electronics Information Technology, 2014, 36(3): 552-558. 熊竹林, 劉策倫, 安建平. 一種低復(fù)雜度線性調(diào)頻信號(hào)參數(shù)估計(jì)算法[J]. 電子與信息學(xué)報(bào), 2015, 37(2): 489-493. Xiong Zhu-lin, Liu Ce-lun, and An Jian-ping. A low complexity parameter rstimation algorithm of LFM signals[J]. Journal of Electronics Information Technology, 2015, 37(2): 489-493. Qunwei Li and Zan Li. A novel sequential spectrum sensing method in cognitive radio using suprathreshold stochastic resonance[J]. IEEE Transactions on Vehicular Technology, 2014, 63(4): 1717-1725. Zou Hai-lin, Zheng Long-quan, and Liu Chan-juan. Detecting parameters of high frequency signals with frequency modulation[C]. 2013 6th International Congress on Image and Signal Processing (CISP), Hangzhou, China, 2013: 1090-1095. Dalabaev S, Muhammad A, Wu Xue-lian, et al.. The application of the system of parameter tuning stochastic resonance in baseband signal processing[C]. 2011 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Harbin, China, 2011: 1387-1389. Fu Zhi-kai, Xing Jian-chun, Zhu Rui-de, et al.. A new method of detecting line-spectrum based on auto-correlation with stochastic resonance theory[C]. 2013 25th Chinese Control and Decision Conference (CCDC), Guiyang, China, 2013: 1104-1107. Jiang Yi and Zhao Hui. A new weak signal detection method based on stochastic resonance and array sensors[C]. 2013 International Conference on Communications, Circuits and Systems (ICCCAS), Chengdu, China, 2013: 287-289. Fan Bin and Hu Niao-qing. Method of weak signals detection based on array of stochastic resonance[C]. 2011 Prognostics and System Health Management Conference, Shenzhen, China, 2011: 1-5. Lin Ying-pei, He Chen, Jiang Ling-ge, et al.. Cooperative spectrum sensing based on stochastic resonance in cognitive radio[J]. Science China Information Sciences, 2014, 57(2) : 1-10. 文川. 基于隨機(jī)共振的LFM信號(hào)檢測與參數(shù)估計(jì)[D]. [碩士論文], 西南交通大學(xué), 2011: 1-74 Wen Chuan. Detection and parameters estimation of LFM signal based on stochastic resonance[D]. [Master dissertation], Southwest Jiaotong University, 2011: 1-74. Chen Wei, Wang Jun, Li Hu-sheng, et al.. Stochastic resonance noise enhanced spectrum sensing in cognitive radio networks[C]. 2010 IEEE Global Telecommunications Conference, Florida, USA, 2010: 1-6. Wang Jun, Ren Xin, Zhang Shao-wen, et al.. Adaptive bistable stochastic resonance aided spectrum sensing[J]. IEEE Transactions on Wireless Communications, 2014, 13(7): 4014-4024. Shuo Shi, Yin Wanyi, Yang Ming-chuan, et al.. A high-resolution weak signal detection method based on stochastic resonance and superhet technology[C]. 2012 7th International ICST Conference on Communications and Networking in China (CHINACOM), Kunming, China, 2012: 329-333. Wei Shi-peng, Zhang Tian-qi, Gao Chun-xia, et al.. The united detection of weak MSK signal using Duffing oscillator and Stochastic resonance[C]. 2011 IEEE 4th International Symposium on Microwave, Antenna, Propagation, and EMC Technologies for Wireless Communications (MAPE) , Beijing, China, 2011: 447-453. -
計(jì)量
- 文章訪問數(shù): 927
- HTML全文瀏覽量: 111
- PDF下載量: 549
- 被引次數(shù): 0